

P

Py
Nowiwie. oad

SAFEGUARD is an ABM system designed to
protect U.S. Minuteman ICBM bases from attacks
by enemy ballistic missiles, Development of the
SAFEGUARD System began with a redirection of
the SENTINEL program in March 1969. Its de-
ployment plan called for a number of sites to be
constructed primarily in the western part of the
United States. As a result of the Strategic Arms
Limitation Treaty (SALT) and related program
decisions, actual deployment was subsequently
limited to a single complex in North Dakota and
a system command center in Colorado.

The initial SAFEGUARD plan called for up to
twelve sites deployed in two phases. The first
phase, for which authorization was originally
granted, provided Minuteman defense at Grand
Forks Air Force Base (AFB), North Dakota, and
at Malmstrom AFB, Montana, together with a
Ballistic Missile Defense Center (BMDC) at
Cheyenne Mt., Colorado. The second phase
would have added Minuteman defense at Whiteman
AFB, Missouri, and at Warren AFB, Wyoming,
as well as defense of the National Command
Authority (NCA) in Washington, D.C. This phase
also retained the option to add additional sites to
protect Strategic Air Command (SAC) bases and
population centers. In March 1971, approval was
granted to proceed with the installation at White~
man and to plan for the Warren site. Whiteman

4-1

Chapter 4.
SAFEGUARD SYSTEM

was designated as the Fire Control Center (FCC)
and Malmstrom as the Alternate Fire Control
Center. The FCC was an intermediate command
center reporting to the BMDC. A year later,
however, authorization for the Whiteman site
was rescinded and Malmstrom was designated as
the FCC.

In accordance with the terms of the Strategic
Arms Limitation Treaty of June 1972, and a sub-
sequent Congressional decision not to authorize
the permitted deployment in the Washington, D.C.
area, the SAFEGUARD System was further re-
duced to provide Minuteman defense only at
Grand Forks AFB. Thus, the current deployment
consists of a Perimeter Acquisition Radar (PAR)
and a Missile Direction Center (MDC) in North
Dakota, both under overall command of the
BMDC in Colorado. Included in the MDC are a
Missile Site Radar (MSR) and associated SPRINT
and SPARTAN missile farms. This deployment
is depicted in Figure 4-1 and is aimed at pro-
viding a number of defense capabilities,!?

The three types of sites in the SAFEGUARD
System are interconnected by communications
links. The PAR site uses a single-face, phased-
array radar to provide early detection and target
trajectory data on threatening ICBMs. Functions
of this site include long-range surveillance, de-
tection and selection of threatening objects, and

COLORADO

BALLISTIC MISSILE
DEFENSE CENTER

e L1 3 7 1 1 7 & 4 1 ' ' 1 ¢ 1 1 1 71 1 0|}

DATA PROCESSING 0041
SYSTEM
U, ,
C.
9 4,
ﬁ K /O,v

SAFEGUARD

OPERATIONAL

CENTER

l-_------g

NORTH DAKOTA

PERIMETER ACQUISITION RADAR

PAR DATA PROCESSING SYSTEM

SINGLE-FACE, PHASED—
ARRAY RADAR

: LONG-RANGE SURVEILLANCE

DETECTION, TARGET
SELECTION

TRACK FOR SPARTAN
INTERCEPT

MISSILE SITE RADAR

MDC DATA PROCESSING SYSTEM
S

MULTIFACED, PHASED —
ARRAY RADAR
ABM TRACK AND GUIDANCE

THREAT TRACK
SURVEILLANCE

SPRINT AND SPARTAN
MISSILE FARMS

Figure 4-1. SAFEGUARD ABM System

ICBM threat tracking for SPARTAN intercept.
This last capability significantly increases the
long-range SPARTAN field-of-fire. The PAR
site does not perform missile guidance, but in-
stead, transmits trajectory and target classifica-
tion data over the tactical communication links to
the MDC, The MDC uses this information to-
gether with data from its own multi-faced,
phased-array Missile Site Radar. This site pro-
vides additional surveillance and target tracking
as well as track and guidance for SPRINT and
SPARTAN missiles. Both PAR and MDC sites
report to the BMDC, which provides a command
interface with other military systems and a means
of disseminating commanddirectives and controls.

4-2

The PAR and MSR are controlled through
digital commands issued by collocated Data
Processing Systems (DPSs). These commands
are used to manage such radar functions as beam
pointing, frequency selection, receiver gating,
thresholding, etc. In addition, application pro-
grams in the PAR and MSR Data Processors
(PARDP and MSRDP) manage the major System
functions of surveillance, tracking, target clas-
sification, radar testing, intersite communica-
tion, and command/control/display. At the MDC,
other programs support engagement management
and missile guidance. The BMDC DPS primarily
performs command, control, and display
functions.

RSN

!

"1
i
>

‘]‘
a

MAJOR SAFEGUARD ELEMENTS
Perimeter Acquisition Radar

The Perimeter Acquisition Radar performs
long-range surveillance, detection, and tracking
of ICBMs for SPARTAN missile intercept.”® As
an auxiliary function, it can provide track data
on selected satellites of interest. To withstand
nuclear blasts,!® the radar equipment is mounted
in a reinforced concrete structure which is
shielded against nuclear electromagnetic radia-
tion. The front face of the building supports an
array of 6888 antenna elements (see Figure 4-2).

At periodic intervals, the PAR searches the
volume of space within a large solid angle in
front of the array face. It can detect small tar-
gets in a typical ballistic missile complex at
large distances with a high probability of detec-
tion. The radar operating frequency can be
changed and the antenna beam-pointing direction
can be switched between points in space and

between multiple transmissions in the same radar
interval,

The PAR transmitter consists of high-power
Traveling Wave Tubes (TWTs) whose combined
total peak radiated power is in the rultimega -
watt range. Target returns are amplified by
low-noise transistor amplifiers which are an
integral part of the phase-steered corporate-fed
array. Further details on the PAR are given in
Chapter 8.

Missile Site Radar

The Missile Site Radar is a four-face, single-
beam phased-array radar operating in S-band.
Its function is to acquire and track incoming bal-
listic missiles and to launch and guide SPRINT
and SPARTAN missiles for intercept.”" The
MSR can also launch and guide SPARTAN mis-
siles for intercept using PAR target data.

Figure 4-2. PAR Building

To withstand nucléa.r effects, the radar equip-
ment is housed in a reinforced concrete structure
shielded against nuclear electromagnetic radia-
tion,1® A large portion of the building is below
ground with an above-ground turret containing
the four phased arrays to provide hemispheric
coverage (see Figure 4-3). Each of the four
arrays consists of 5001 elements used for both
transmission and reception.

The MSR scans the complete hemisphere and
can detect targets of small cross section at
ranges of several hundred nautical miles.3#

The antenna beam pointing direction and opera-
ting frequency can be switched between points in
space between transmissions. Separate transmit
and receive feedhorns are used behind each MSR
space-fed array.

The MSR transmitter final amplifier has two
high-power klystrons operating in parallel, each

with its own power supply. This permits opera-
tion at half power, should one unit fail. The
transmitter output power is in the megawatt
range at high duty cycle. Target returns are
amplified by a cooled parametric amplifier be~-
fore dechirping to achieve the required sensi-
tivity. Further information on the design and
performance of the MSR is given in Chapter 7,

SPRINT Subsystem

The SPRINT Subsystem consists of high-
performance, ground-radar-controlled, nuclear-
armed interceptor missiles and associated sup-
port equipment. The missiles are emplaced and
ready for launch from underground cells which,
together with their support equipment, are de-
ployed in launch areas, or farms, at the MSR
collocated site (Figure 4-4) and at farms remote
from the MSR.

Figure 4-3. MSR Site

4-4

Figure 4-4. SPRINT Cell with MSR in Background

The SPRINT interceptor missile is designed
to provide fast reaction-time in reaching endo-
atmospheric intercept points.'”® At launch, the
missile is ejected from its underground cell and
its first stage ignites automatically. A pitchover
maneuver is initiated prior to acquisition and
track by the MSR. A "missile model" in the
computer tells the radar where to look on the
planned trajectory so that acquisition can be
made as soon as a clear transmission path is
available. After first-stage burnout, the second
stage is ignited by ground command. The second
stage burns for a short interval during which final
corrective steeringorders are issued andthe mis-
sile attains the altitude necessary for intercept.

4-5

In-flight fratricide related to launch station
spacing is a limiting constraint on the rate-of-
fire. The launch equipment is capable of accept-
ing launch orders and initiating the launch
sequence in a very short interval after receipt of
a preparation order. This interval includes the
time alloted for tests requested either locally or
by radar command and can be reduced somewhat
if these tests are not conducted. Refer to
Chapter 9 for further details on SPRINT.

SPARTAN Subsystem

The SPARTAN Subsystem consists of high-
performance, ground-radar-controlled, nuclear-
armed interceptor missiles and associated

support equipment. The missiles are emplaced
and ready for launch from underground cells de-
ployed in a collocated farm at the MDC site,
Each cell -is equipped with environmental control
equipment, as well as testing, monitoring, and
exercising facilities.

The SPARTAN interceptor missile, on com-
mand from the MDC bata Processor, is launched
from its undergroundcell at an angle of 5 degrees
from the vertical. After launch, the missile fol-
lows a radar-controlled flight plan using three
solid-propellant-powered stages and two in-
flight separations,

After first-stage boost and burnout, the
second stage is ignited automatically and booster
separation is achieved by second-stage thrust
forces. Second-stage control and maneuver-
ability are provided by the second-stage fixed
fins and the third-stage deflectable fins. After
second-stage burnout, the missile exits the atmo-
sphere in the glide mode. For intercept to occur,
the burned-out second stage must be separated
from the third-stage warhead section. Separa-
tion is achieved by skin-cutting ordnance shortly
after third-stage ignition. Both ignition and
separation events are accomplished by ground
command and occur in the exoatmosphere region.
Third-stage exoatmospheric control is accom-
plished by directing the exhaust from the third-
stage motor through nozzles which are an integral
part of the third-stage fins. Finally, the nuclear
warhead is spin-stabilized during the latter por-
tion of third-stage burn.

The SPARTAN launch equipment consists of
the launch and test equipment and the launch re-
radiation antenna. The launch equipment pro-
vides for testing launch station hardware and
missiles under control of the MDC Data Proces-
sor. This testing detects any faulty or unsafe
condition to ensure that the subsystem is in a
battle-ready state permitting missiles to be
launched in rapid-fire sequence. Refer to
Chapter 10 for further details on SPARTAN.

Data Processing System

The SAFEGUARD Data Processing System
(DPS) design was dominated by requirements for .
high performance and high availability and re- :
liability.*®-# High performance requirements are
dictated by the nature of the DPS's primary job:
managing system resources and controlling a
large radar tracking and missile guidance system '
in real time., After radar returns are processed, .
new commands must be generated and transmitted '
to the radar every few milliseconds on a fixed
schedule. This results inpeak processor through-
put of 10 million instructions per second and peak
transmission rates to service the radar and S
other peripheral devices of 200 megabits per
second.!%-2 '

kY

The DPS equipment at a Missile Direction
Center is shown in Figure 4-5. The Central
Logic and Control (CLC) is the multiprocessing
computer used to drive the radar and the other
peripherals shown. Under software control, the
CLC can be configured into two separate parti-
tions of arbitrary size, each capable of operating
as an independent computing system., Tactical
application programs execute on the larger or
"green' partition. Exercise drivers for the .-
application programs and independent support-
activity programs execute on the smaller or ‘
"amber' partition, which also provides a i
reserve of spare equipment.

The CLC can be configured with up to ten ;
processors?? Single-processor throughput of S
about 1.5 million instructions per second is
achieved by a combination of design techniques
that include instruction execution overlap and
use of high-speed arithmetic algorithms.19.20
Every processor has access to each of several
read-only instruction memories called program
stores, and several read-write memories called
variable stores. These stores have a memory- .
cycle time of 500 nanoseconds and a double-word i
size of 64 bits to provide a memory bandwidth in
excess of that required for maximum performance

RADAR
INTERFACE
CONTROLLER

TO RADAR

[]
CENTRAL LOGIC
AND CONTROL

PARTITION 1

PARTITION 2

Y

MAINTENANCE

AND ﬁ
DIAGNOSTIC
SUBSYSTEM l} l/ @ U
[}
RECORDING CORND MISSILE N ra EXERCISE
SUBSYSTEM CONTROL DISPLAY su'BAsL\Jrz?sMs TRANSMISSION SLLJJI:’EFS!T
- SUBSYSTEM CONTROLLERS
AN

4 4 3

L |

TO TO
MISSILE OTHER
FARMS SITES

Figure 4-5, Data Processing System Equipment

of a single processor. All data transfers be-
tween the CLC and its peripherals are controlled
by an Input/Output Controller (IOC), thereby al-
lowing processing and I/O tasks to be accom-
plished simultaneously.

Table 4-1 shows the CLC configurations, both
green and amber, in the SAFEGUARD System.

Several major subsystems peripheral to the
CLC are shown in Figure 4-5. These include:

e Radar Interface Controller - provides the
primary interface between the IOC and the
radar for exchange of control and data
words. This unit accepts formatted binary
words from the CLC and distributes data
to the appropriate radar subsystems.

e Missile Launch Subsystems - convert CLC
commands into control signals for the col-
located and remote missile farms; this equip-
ment also receives missile status informa-
tion for encoding and transfer to the CLC.

4-7

Intersite Data Transmission Controllers -
provide transfers of d'gital data via data
links between sites.??

Exercise Support Units - required in sys-
tem exercises to provide an interface be-
tween the simulated threat running in the
amber part of a partitioned DPS and the
tactical programs running in the green
partition.

Command and Control Display Subsystem -
provides the man-machine interface for
monitoring and directing tactical operations
through Cathode Ray Tube (CRT) displays,
consoles, teletypewriters, and wall :
displays.21-31

Recording Subsystem - contains the stand-
ard computer peripheral devices: magnetic
tape transports, disk memory units, line
printers, and card reader.

Maintenance and Diagnostic Subsystem
(M&DSS) - provides a centralized facility
for testing and maintaining digital hardware
to ensure the availability and readiness of
the DPS.32-3% The M&DSS uses unique

Table 4-1
CLC Configurations

MDC PAR BMDC
Equipment Green Amber Total Green Amber Total
Processor Units 7 3 10 3 2 5 1
Program Stores 9 3 12 4 3 T 3
Variable Stores 10 5 15 10 4 14 3
I0Cs) 1 1 2 1 2 1
Timing & Status 1 1 2 1 2 1

dedicated hardware to conduct non-real-
time, programmed diagnostic tests on the
DPS equipment through an independent data
bus connected to each digital unit. The
M&DSS also supports initialization of the
DPS hardware and assists in automatic
reconfiguration and recovery of this hard-
ware should it be necessary during the
tactical mission.

For more information on the DPS equipment,

refer to Chapter 11.

SOFTWARE DEVELOPMENT
Development Cycle

The SAFEGUARD development benefited sub-
stantially from prior work on the R&D prototype
called the Meck Test Facility, This effort pro-
vided an early demonstration of critical ABM
concepts and also collected data needed for sub-
sequent design and evaluation. The many lessons
learned were applied directly to the SAFEGUARD
program.

The software development cycle involved a
number of distinct phases. These phases over-
lapped, since the general approach used required
integration of a basic working system with in-
creasingly more complex capabilities.® This in-
tegration was performed at a separate test facil-
ity, the Tactical Software Control Site (TSCS),
using special system exerciser arrangements,

The separate phases of the development cycle
were as follows:

® Requirements Generation - initial system
requirements were determined, established,

4-8

negotiated, documented, and rigorously
controlled.

e Software Design - in process design, sys-
tem requirements were translated into a
software architecture which defined global
structures, tasks, task priorities, and
task timing requirements for the data proc-
essing environment, In program design,
the local data base, algorithms, and con-
trol structure for individual tasks were
determined.

e Coding and Unit Testing - codes were
written, compiled, and checked at the unit
or task level using a simulator, drivers,
and standard debugging techniques.

e Process and Functional Integration - facili-
ties of TSCS were used to combine blocks
of new debugged unit code into processes
of increasing functional capability. When
the tactical software attained a predefined
level of capability, it was sent to site for
final integration.

Activities at site were similar to those at the
TSCS. However, at site the entire complement
of peripheral hardware was available for integra-
tion with the system. The final phase of system
development involved system testing, in which
the PAR, MDC, and BMDC sites were 'netted"
to achieve coordinated operation of the entire
system. After this, formal acceptance tests

were run at site.

During all phases of system development,
evaluation played a strong role. A separate de-
partment was responsible for evaluating system
requirements, implementation algorithms, and
Feedback

resulted in frequent changes and refinements

prototype and system test results.

in many areas.

Lot

In the following paragraphs, the software de-
velopment activities outlined above are discussed
more fully.

Meck Test Facility

The Meck Test Facility consisted of a proto-
type MSR, SPRINT and SPARTAN missile sub-
systems, and a DPS, During the R&D phase,
ABM system requirements were constantly
changing; thus it was decided to implement a
series of test processes on Meck, each with in-
creasing complexity and more stressing system
objectives.

The first process, M-0, was designed to test
the radar and missile hardware subsystems.
The next process, M-1, tested both SPRINT and
SPARTAN intercept capability in a light-threat
environment. The final process, M-2, verified
SAFEGUARD tactical algorithms for missile
guidance, as well as radar surveillance and track-
ing functions. This inclued remote launches of
SPRINT missiles from Illeginni Island. The test-
ing took place from early 1969 through 1974,

A total of 882, 000 program instructions were
written for the Meck Test Facility, but only
255,000 instructions were included in the three
test processes. The remainder were needed for
hardware installation and maintenance programs
(137,000 instructions) and support software,
such as assemblers, process construction, simu-
lation packages, etc. (490, 000 instructions).

In addition to the planned testing and verifica-
tion, the Meck effort made other contributions to
SAFEGUARD. Many of the techniques, proce-
dures, and practices developed were later to be
used in the SAFEGUARD software development.
These were in many diverse areas, such as
operating system and process design, software
configuration control, and real-time debugging
aids, to name a few.

TSCS and System Exerciser

To develop and test SAFEGUARD software and
to support system deployment, the Tactical

Software Control Site was established at Madison,
New Jersey. This test facility tontains the PAR
and MDC data processing equipment and portions
of the analog hardware that interface with the
missiles and radars at site. The TSCS also in-
cludes office space for major elements of the
software development organization, consisting of
designers, programmers, and test teams, as
well as many other support personnel.

The basic requirement of the TSCS was to re-
produce accurately the software environment
found at site, In short, its objectives were
to:

e Verify performance of tactical software in

its operational environment

o Test software in conjunction with the design
organization

e Reduce development time through compre-
hensive testing prior to shipment to site

e Support deployment activities by providing
a centralized facility to aid in solving
problems encountered at site,

The TSCS was required to have a representa~
tive complement of DPS hardware for both the
PAR and the MDC. This meant two distinct DPS
configurations, each sized in accordance with
tactical requirements (see Figure 4-6). Fur-
thermore, each configuration had to replicate the
interfaces between computer and peripherals,
and the operation of peripherals to the extent
necessary for tactical-like responses. In addi-
tion, the capability to net the PAR and MDC was
required for system testing.

The tactical equipment at TSCS was used al-
most exclusively to test and integrate the
SAFEGUARD operating system, application soft-
ware, and installation and maintenance software,
The support functions needed to develop, control,
and analyze tactical software were relegated to
general purpose computers.” An IBM System
370 was installed at TSCS and off-premises
access to a HIS 635 was provided.

A system exerciser was developedto test
tactical software in the SAFEGUARD equipment
at TSCS. A separate exerciser was provided for

TAC;:SE/-}’L SOFTWARE
ARATION ——\
ENVIRONMENT

TACTICAL SOFTWARE

/= EXECUTION ENVIRONMENT —

N l——

COMPUTATION CENTER

DATA
PROCESSING
EQUIPMENT

MDC TSCS CONFIGURATION

MSR
INTERFACE
EQUIPMENT

Y

MISSILE

IBM SYSTEM 370
AND RELATED
SUPPORT

INTERFACE
EQUIPMENT

SYSTEM

FACILITIES

> EXERCISER
EQUIPMENT
b
PAR TSCS CONFIGURATION
SYSTEM
> EXERCISER
EQUIPMENT

DATA
PROCESSING
EQUIPMENT

PAR
INTERFACE
EQUIPMENT

Figure 4-6. Tactical Software Control Site Functions

each configuration (PAR and MDC) for individual
testing and for joint testing of the two systems in
netted operation. 3% ¥ These exercisers are used
now in the deployed system for site and system
readiness verification.

In designing the system exerciser, care was
taken to devise a method that would realistically
produce an environment similar to the actual
tactical conditions found at site, Two special
hardware aspects provided this capability. First
and most important, the PAR and MDC configura-
tions were each configured into two separate
partitions as shown in Figure 4-7. The larger,
or green partition, contained the tactical appli-
cation software as it would be used in an actual
engagement; the smaller, or amber partition, con-
tained the system exerciser software. Second,
special exercise support hardware was developed:

4-10

an Exercise Control Unit (ECU) and a Radar
Return Generator (RRG).

During a system exercise, the amber partition
generates radar returns representing a pre-
selected threat.
ECU to the RRG for conversion to analog form
and injection into the radar receiver of the green
The tactical (or green) partition re-

These returns are sent via the

partition.
sponds as in a real engagement, issuing radar
orders, missile commands, and intersite com-
munications. These are sent via the ECU to the
amber partition where they control simulated
missile responses. The ECU also appropriately
routes these responses and intersite communi-
cations from the amber partition to the missile
ground equipment and tactical communications
links in the green partition.

i

RADAR REPLIES

RADAR

RECEIVER

CENTRAL LoGIc |L.RADAR ORDERS —
AND CONTROL
(TACTICAL co“fv:smﬂh%y
APPLICATION 0
SOFTWARE) MESSAGES _ SlhgliIBAA'II;ED
DATA TRANSMISSION
S e AND MISSILE LAUNCH RETURNS
SUBSYSTEMS '
RESPONSES
N
)
RADAR
GREEN PARTITION E’éﬁﬁg‘gﬁ et eely
AEEEEETEEEEERENEEEEEEEEEEEE RN EEEEEEEEn UNIT] GENERATOR
AMBER PARTITION (ECU) (RRG)
—

MISSILE
COMMANDS/

MESSAGES

SIMULATED
MISSILE

CENTRAL LOGIC RESFONSES _,

AND CONTROL
(SYSTEM

RADAR ORDERS

DATA TRANSMISSION
AND MISSILE LAUNCH
SUBSYSTEMS

EXERCISE

SOFTWARE) RADAR RETURNS (THREAT)

THREAT DESCRIPTION

THREAT
‘TAPES

Figure 4-7. Functional Configuration for System Exercise

When the system exerciser is used in the
netted mode, the tactical communication between

the PAR and MDC is not interrupted for any simu- .

lated response, but is allowed to flow normally
on one circuit of the split link. The other circuit
is used for communication between the PAR and
MDC exercisers.

The system exerciser has sufficient traffic
capacity to test tactical hardware and software
at the required design level. Yet, the amber
hardware requirements were kept to a minimum
by performing as much simulation as possible
prior to conducting a real-time exercise. A
program called the SAFEGUARD Threat Action
Generator (STAG) was developed to generate
target, defensive missile, and intersite message
information (for local exercises) in a scenario
defined by an input deck. STAG is run in non-
real-time on the IBM System 370 and records the

simulated threat on tape. These tapes then are
used during an exercise by the exerciser soft-
ware in the amber partition to generate the
simulated responses. *

Requirements

The Data Processing System Performance
Requirements (DPSPRs) are a set of documents
that define the requirements of SAFEGUARD
tactical software for the PAR, MDC, BMDC, and
system exerciser. 3¢~*® Requirements were gen-
erated by the system engineering organization in
accordance with overall system objectives.

*For additional information see SAFEGUARD

Data Processing System: Process-System Test-
ing and the System Exerciser, B.P. Donohue III
and J. F. McDonald, Bell System Technical
Journal - Special Supplement (1975).

The primary objective of the DPSPRs was to
specify required functional performance in suf-
ficient detail to permit development of software
by the designers, yet not limit design freedom.
A second objective was to state functionally how
the system was to operate in its different defense
modes.

~

Changes in requirements were made through
the course of development as a result of feedback
from the software development organization, the
SAFEGUARD System Tests conducted at Kwajalein
and Grand Forks, system evaluation studies, and
from detailed review by the Army SAFEGUARD
System Command (SAFSCOM). Later on, formal
change -control procedures were instituted on
these documents to ensure an up-to-date system
definition of SAFEGUARD performance and to
control the final software products.

Final system testing and acceptance require-
ments generated by the system engineering
organization were based on the DPSPRs.

Software Design

The collection of application software used to
drive the DPS is called the application process
and is built from basic computing units, called
tasks, which are single routines with or without
subroutines. The operating system, considered
to be part of the process, schedules tasks from
a predetermined, priority-ordered task list for
execution on the next available processor.*!*?
Once in execution, a task is not interrupted be-
fore completion except for error conditions.4?

Process design is the definition of overall
software structure including task assignment and
global data base design. The objective of process
design is to meet system requirements with a
minimum-cost DPS configuration. This activity
was complemented by program design which in-
volved developing the algorithms, internal data
base, and control structure necessary to imple-
ment the function defined for a task. The soft-
ware design was documented in process design
specifications and process workbooks. Between
this detailed level of documentation and the

4-12

DPSPRs, some application process organizations
also produced intermediate-level software func-
tional design requirements.

In many areas, various levels of simulation
were used to validate the design. In some cases,
a few selected equations were implemented on a
time-sharing system for a quick exploration of
correctness and adequacy. In others, a subset
of the real-time computer program, complete
with its interface structures, was simulated. In
the PAR development, the intermediate-level
functional design requirements, together with
radar, threat, and environmental considerations,
were modeled and simulated to study expected
system performance.

The size of individual programs and the time
required for their execution were two major

‘parameters that were carefully controlled. i-

tial sizing and timing estimates were made early
in development based on past experience with
similar programs. Throughout the course of
further development, sizing and timing estimates
were tracked on a monthly basis.

It was found essential to initiate design of the
data recording and reduction system early in the
development cycle. An attempt was made to de-~
fine the data to be recorded for each computing
function and to désign the data base with the ulti-
mate use of the recorded data kept in mind.

Coding and Unit Testing

Most SAFEGUARD software was written in
CENTRAN, an extensible intermediate-level
language resembling a subset of PL/1.%
CENTRAN is a macro-based language built on
SNX, the assembly language for the CLC. As
such, CENTRAN provides many of the advantages
of a high-level language but can be interspersed
with assembly language statements and system
macros as necessary. CENTRAN generates
efficient code and was adopted-as the project
standard.

A project-wide attempt was made to include
defensive programming techniques during the

coding period. Particular attention was given

to computations that potentially could cause in-
terrupts which, in turn, would result in task
termination. Detection and error recovery codes
were then added. Another project-wide technique
involved enforcing adequate source-code docu-
mentation by requiring well-commented program
listings. This proved particularly effective

later on in isolating programming errors that
were detected during the integration phase.

All programming organizations responsible
for a functional area of the application software
held design reviews for the total project. These
reviews not only helped to educate test and inte-
gration personnel, but sometimes uncovered
subtle design flaws. Some programming groups
used structured programming, These techniques
led to an orderly top-down approach in the de-
tailed programming design and coding. In such
instances, a substantial saving, both in variable
store and in computing time, was often achieved.

Once the coding of individual software units
was complete, two stages of testing were under-
taken. Units assigned to individual program-
mers - generally entities of code ranging from
100 to approximately 1000 machine instructions -
were individually tested. The purpose of this
unit testing was to test the logic paths within a
unit. To support this activity, 2 number of
special drivers were developed to allow indivi-
dual units to be interfaced with the data sets
needed in their operation. These drivers sequen-
tially initialized the data sets to produce the en-
vironment necessary to execute one logic path
after another. Element testing was the second
stage of testing. Program units comprising a
major functional element of the process were
tested together using special software "stubs' in
place of the other major functions. These tests
were primarily functional in nature. A series
of tests was defined that would exercise all major
functional requirements given in the system re-
quirements and design specifications.

All software preparation and most of the unit
and element testing was performed using

commercial computers, This was primarily
because time on the TSCS test facility was too
limited to support such extensive activity. How-
ever, a decided advantage accrued from this
approach since a number of testing and debugging
tools were already available on the commercial
machines. Others were developed specifically
for SAFEGUARD in high-level languages such as
FORTRAN and PL/1. One such tool was the
simulator called STACS (SAFEGUARD Tactical
Computer Simulator) which provided the primary
unit and element testing vehicle *s STACS fully
simulates, on the IBM System 370, a single CLC
processor and most of the conventional CLC
peripheral units. It also simulates many of the
operating system capabilities designed for the
CLC. Special test drivers were designed to in-
terface with STACS, providing universal testbeds.
In addition, a variety of debugging aids were in-
cluded in STACS to allow exhaustive testing of
program units. Such debugging aids range from
simple snaps and traces to simulation of error
response’and the ability to modify or patch a unit.

Configuration Management was an important
aspect in development of the software product.'®4
Methods were developed to identify, control,
track, and audit the numerous versions of the
programming units to be released for process
integration. These methods included rigid con-
trol of the patches required to correct the coding
problems discovered during integration.*®4?
Central to this activity was a disc-based library
system which was an IBM proprietary product.
This system offered many of the features neces-
sary to sustain a large development effort. For
example, it included an editor for changing source
lines, a2 means of temporarily changing source
for testing, and a mechanism to facilitate delivery
of debugging code. Perhaps its most significant
contribution was the procedural discipline it uni-
formly forced on all SAFEGUARD programmers.

Other procedures were developed to control

Trouble

Reports (TRs) were required to document any
problems occurring during testing, Corresponding

all patches made to delivered software.

Correction Reports (CRs) described the approach
used in correcting the trouble via a patch or
source change. A large number of support soft-
ware packages were developed to assist in these
configuration management procedures, and in-
cluded programs ranging from the building of
patch files for a process to the identification and
reporting of status on TRs and CRs./#84~

Process and Functional integration

Following unit and element testing, collections
of functions were combined and tested on the PAR
and MDC DPS configurations at TSCS. For ex-
ample, the basic control programs for the MDC
were first merged with the operating system,
and the ability to load, initialize, and cycle was
established. Then, software for the radar loop
was added, i.e., radar management, search,
and track programs.

Ability to search and track was first estab-
lished at low traffic levels, while the radar hard-
ware was simulated by software drivers. After
basic operation was established for the sbftware,
the radar hardware was introduced into the testing
loop. In parallel with this activity, application
programs supporting intersite communications
and command and control were tested in a separ-
ate configuration at TSCS. Similarly, both battle
planning and missile guidance software were
tested in separate software environments. Ulti-
mately, these programs were merged into a
single MDC application process and the complexity
of the test cases was systematically increased.

This integration was done separately for the
PAR and MDC with the effort planned, as seen
above, so that a number of parallel activities
could be carried out by independent integration
teams. Such an incremental approach allowed
for integration of increasingly more complex
capabilities into the software, building from a
simple nucleus of code and culminating in a full
application process for each site.

Early in this integration, drivers were de-
veloped to assist in the first steps. These early
efforts, referred to as process integration, were

4-14

devoted mainly to software considerations such
as basic cycling, sanity, and interface testing
between major software blocks. Later, when the
system exerciser was available, it was used ex-
clusively to drive and stress the application proc-
esses under various conditions and loads. This
testing also covered the radar hardware at TSCS
and was planned to include specific functions
given in the requirements. This functional inte-
gration testing culminated in demonstrating
satisfactory performance in both the local and
netted modes of the large scenarios planned for
eventual system testing at site. Literally thou-
sands of individual test cases were documented,
including the success criteria, and then run in

- support of the overall process and functional

integration phases.

A number of support software facilities were
crucial in building and testing these large appli-
cation processes. (See Figure 4-8.) CENTRAN
and SNX, like most compilers and assemblers,
produced relocatable object code. A program
was developed to allocate CLC memory, build
the control tables needed by the operating system,
perform binding functions, structure the over-
lays, and perform a host of related services.
This program, called the Execution Preparation
Facility (XPF), operated on the IBM System 370.5¢
Similarly, most testing of software units and
elements produced by XPF was performed by
STACS on the IBM System 370.

Another software package, called DEBUG,
provided software debugging aids for the CLC
and proved invaluable early in process integra-
tion $'%2 DEBUG's capabilities included many
of the same aids provided on the support com-
puters by such facilities as STACS. Although
DEBUG contained some multiprocessor capa-
bilities, its design was oriented more toward a
single processor, non-real-time environment.
Further extension of debugging aids on the CLC
resulted in the development of DARTS (Debug-
ging Aids for Real-Time Systems). This soft-
ware provided full multiprocessor, real-time
capabilities with minimum perturbation on the

s |

SOFTWARE PREPARATION

SOFTWARE EXECUTION

/ {CODING AND UNIT TESTING) N 7 (PROCESS AND FUNCTIONAL INTEGRATION)
N
SOURCE
CODE | cENTRAN BINDS OBJECT MODULES, MDC
COMPILER ALLOCATES CLC MEMORY, cLC
STRUCTURES OVERLAYS, ETC.
R RELOCATABLE INTEGRATION AND REAL-
OBJECT EXECUTION ' TIME TESTING OF
PROGRAMMER MODULES | PREPARATION SO O TACTICAL SOFTWARE
FACILITY WITH AIDS SUCH AS
INPUT ON TAPE
(XPF) DEBUG, DARTS, AND
CLC MONITOR
SOURCE SAFEGUARD
CODE SNX Tg‘c;'%'- PAR
COMPUTER
ASSEMBLER SomMpUTER cLC
(STACS)
e

PERFORMS NON-REAL TIME
UNIT AND ELEMENT TESTING

Figure 4-8. Software Preparation and Testing

tirhing and operation of the application program
under test. An array of features was made
available, including the ability to simulate
manual inputs in real time.

The CLC Monitor was developed to further
isolate the effects of running debugging tools on
the application process being tested . This
monitor is an external hardware monitor which
includes its own memory, extensive logic to
count and filter data, and two tape units. It was
used primarily to validate that process perform-
ance was consistent with design. Troubles, such
as heavily-loaded time frames and long-running
tasks, were analyzed and design changes were
made when necessary to provide a more balanced
system.

Detailed analysis of functional integration
tests was facilitated by designing the real-time
recording functions as an integral part of the
application and exercise software. Recorded
data was reduced and analyzed primarily off-line
on the IBM System 370 using the SAFEGUARD
Data Reduction System, although summary in-
formation was available on-line 5%

4-15

Site Integration and System Testing

The TSCS and site integration phases signifi-
cantly overlapped in time.® As tests were com-
pleted at TSCS, software updates in the form of
patches and data packages relating to performance
of the tests were sent to site. These packages
included test specifications, exerciser tapes,
test results, and reports which itemized any
known problems not yet corrected. Site integra-
tion then consisted of testing the application soft-
ware against the full complement of SAFEGUARD
hardware using a subset of TSCS tests and special
site-oriented tests such as radar-calibration and
satellite-tracking tests.

Finally, system testing was carried out at site.
This involved a comprehensive series of accept-
ance tests which demonstrated system capability
consistent with requirements and represented the
final level of product testing prior to delivery 56
During system testing, it was not possible to
exhaustively test all tactical threat environments.
Rather, these acceptance tests, or System Tech-
nical Verification Tests (STVTs) as they were
called, were defined at the design-traffic level

for each of the various system operating modes.
A series of tests was designed for each mode, at
first simulating all communications with other
sites, then netting pairs of sites, and finally net-
ting the entire system.

The stress level was reduced in early testing
by selecting subsets of the STVT environments
and by running buildup tests at these lower stress
levels before increasing the traffic load. Once
this was accomplished, the "test chain" was
continued by physically internetting the sites in
stages until the total system was operating at
design-~traffic levels. This approach, in which
all tests in the chain support the STVTs, greatly
simplified the problems of integrating a dynamic
system.

SAFEGUARD OPERATION AND MAINTENANCE
Operational Overview

The size and duration of the SAFEGUARD de-
velopment effort were large indeed. Table 4-2
shows the number of machine instructions for the
- major software components., Real-time sbftware,
consisting of MDC and PAR application programs
with their exercisers, the BMDC application pro-
gram, and the CLC operating system, contained
a total of 735, 000 instructions.® % Support soft-
ware, such as compilers and simulators, which
executed on commercial computers, amounted to
580, 000 statements, some in assembly language
and some in PL/1 and FORTRAN, Installation
and maintenance software for the data processing
system and the radars totalled 830, 000 instruc-
tions. At least several hundred thousand addi-
tional instructions were developed for other pur-
poses such as test drivers and specialized
simulations. Together this represents nearly
2.5 million instructions written, tested, and
debugged over the six years of SAFEGUARD
development.

The massive amount of radar and digital
equipment installed at site and at TSCS is visibly
even more impressive. The radars on the plains
of North Dakota are monuments to modern

4-16

Table 4-2
Size of Major Software Components

Real-Time Software Instructions

MDC Application 300,000
MDC Exerciser 50,000
PAR Application 200,000
PAR Exerciser 25,000
BMDC Application - 60,000
CLC Operating System 100,000

Total 735,000

Support Software Source Statements

CENTRAN, SNX, XPF, STACS, etc. 210,000

System Simulation 50,000
Exerciser Support 30,000
Data Reduction 150,000
Configuration Management

Programs 70,000
Fault Logic Simulation 70,000

Total 580,000

Installation and Maintenance
Software Instructions

MDC Radar Installation tests 50,000
PAR Radar Installation Tests 110,000
Real-Time PAR Radar Tests 60, 000
M&D Operating System 120, 000
Maintenance & Diagnostic Tests 300,000
ITP, DUX, RTE, NPD, etc. 190,000

Total 830,000

technology housing some of the most complex
electronics in the world.!? Within these buildings
and at the BMDC site in Colorado and the TSCS
in New Jersey, hundreds of digital equipment
racks were assembled to provide the computing
power needed to control and maintain the de-
ployed system and its test facility.

The remainder of this section briefly describes
the operational aspects of the system. The Com-
mand and Control Display Subsystem provides
the facility for monitoring and controlling tactical
operations and maintenance.?”

Tactical operations are basically concerned
with integrating the SAFEGUARD weapon system

into the total national defenée structure, If an
actual threat is detected, the primary tactical
function is toprovide for the timely release of the
system, Maintenance operations are concerned
with keeping each element of the SAFEGUARD

System at the highest availability level possible i-#

This requires monitoring and coordinating main-
tenance activities for each subsystem consistent
with overall tactical demands. Finally, the TSCS
test facility takes on a new role during the opera-
tional phase of the system — supporting site
needs by helping to solve and correct problems
as they arise.®

Tactical Command and Control

The command and control functions in
SAFEGUARD are divided into maintenance and
tactical tasks, The maintenance aspects are
treated separately in the next section. The
tactical functions are designed to be automatic
when both feasible and cost effective, with only
certain key functions assigned to man. These
manual actions complement the automatic system
and, except for system release, are not a se-
quential link in its operation. Hence, man is
a controller rather than an operator in the
SAFEGUARD System.?

The Ballistic Missile Defense Center is the
highest echelon of command and control in the
SAFEGUARD System. It is collocated with the
Commander=-in-Chief of the Continental Air
Defense Command (CINCONAD) Combat Opera-
tions Center (COC) in the Cheyenne Mountain
Complex at Colorado Springs, Colorado.
CINCONAD exercises operational command of
the SAFEGUARD System through the BMDC.
The BMDC, in turn, controls and directs the
activities of the Perimeter Acquisition Radar
and the Missile Direction Center 4%

The COC has special nuclear-employment
authority equipment connected directly to the
BMDC.# In addition, the COC has closed-
circuit TV monitors on BMDC displays. These
interfaces provide the BMDC with authorization
for use of SAFEGUARD nuclear weapons, attack

warning and other intelligence data generated
external to SAFEGUARD, alert and readiness
level coordination with other defense systems,
coordination with use of offensive forces, and
requests for special intercepts or satellite ob-
servations. The BMDC sends SAFEGUARD-
generated early warning, attack assessment
data, or results of satellite observations to the
CocC.

Overall manual command and control functions
in SAFEGUARD generally relate to implementa-
tion of actions associated with this COC-BMDC
interface. All such command and control actions
at the BMDC, MDC, or PAR require positive
feedback to man indicating the application soft-
ware has recognized the manual input, If a
manual action is meaningless or the sequence of
actions incorrect, the system indicates this to
man. In addition to validity checks on manual
inputs, each site performs a validity check on
any message it receives from other sites.

A tactical command and control action is
classified as either a directive or a control ac-
tion. A directive is manually initiated by higher
authority and requires a corresponding manual
action at the PAR or MDC. A control is manu-
ally initiated by higher authority and will be auto-
matically effected at the netted PAR or MDC
without a local manual action. The Command
and Control Display Subsystem includes provision
for display of directives (called forced messages)
that a tactical officer may implement. The source
of each directive accompanies the notification.

System Maintenance

Maintenance is functionally divided into several
Maintenance Activity Centers (MACs). The divi-
sion follows the hardware subsystem division of
the site; for example, a DPS MAC, Radar MAC,
Missile MAC, etc. The personnel in each MAC
are supervised by a Maintenance Director at a
maintenance console. From this console, he can
request software-controlled subsystem tests that
provide current status and fault information.

The console also allows him to report his status

to the System Maintenance Director. The System
Maintenance Director, together with the Equip-
ment Readiness Officer, man a system monitor
console in the Equipment Readiness Center.5:6
In this way, information on all equipment prob-
lems is conveyed to the tactical command, with
corrective maintenance controlled and scheduled
consistent with the tattical needs of the site.

A number of on-line procedures are available
to maintenance personnel. The most useful and
general method is to conduct System Readiness
Verification (SRV) exercises, The SRV uses the
system exerciser discussed previously. Sce-
narios are available to verify specific functional
and hardware aspects of the system. The SRV
provides a local or netted system test which
stresses not only the CLC hardware and its inter-
faces but also exercises the application software
under simulated inputs representative of the de-
sign threat. Other on-line tests periodically
used for maintenance are the radar Class A and
B tests, the missile subsystem Class B tests,
Normal Path Diagnostics (NPDs), and Real-Time
Exercisers (RTEs). These tools are part of the
application software and are used during normal
tactical operation.

The Class A tests are cycled automatically by
the application software and measure overall per-
formance to ensure that the system is meeting
acceptable operating standards. The Class B
tests are run on request and are designed for de-
tailed alignment and performance investigations.
Whenever the CLC undergoes a reload operation,
the NPDs are run to test all processor units,
program stores, and variable stores in the green
partition, as well as their interfaces, including
those to the input/output controllers. Once the
application program is cycling, the Data Proces-
sing Officer can request the RTEs be run auto-
matically to test each program and variable store
every 5 minutes.3!

A number of off-line maintenance tests also
are used. Generally, these tests are designed to
check equipment off-line in the amber partition,
although a few tests require the full system

4-18

configuration., The M&D Subsystem provides a
fast procedure to isolate hard faults to a chassis
or printed circuit board that can be immediately
replaced. These tests usually employ fault-
location dictionaries that pinpoint the trouble
down to a replaceable level.®2™%

Digital Unit Exercisers (DUXs) also are used
to check individual racks.” These are special-
purpose equipment exercise and checkout pro-
grams designed for each unique type of DPS rack,
Each DUX program provides the capability to con-
trol the functional operation of a rackon a macro-
scopic level and to dump the contents of individual
registers or groups of related registers within
the rack. Strictly speaking, these exercises are
not tests but have proved valuable in isolating and
solving maintenance problems. Some Istalla-
tion Test Programs (ITPs) developed for site
integration have also proved useful in resolving
intermittent timing problems and other non-hard
faults. The ITPs are being retained at site.

All of these tests are usedfor periodic Preven-
tive Maintenance (PM) procedures. Scheduled
PM activities are carried out according to pro-
cedures contained in the Contractor Maintenance
Data System (CMDS). As PM checks become
due, maintenance personnel follow the steps listed
in the CMDS, reporting any faults that occur to a
maintenance director. Corrective repair activity
is coordinated with the Equipment Readiness
Officer to return the system to a fault-free state.
At less frequent intervals, periodic validation of
system maintenance is performed using closed-
loop tracks taken on test objects, such as satel-
lite and calibration spheres external to the
system. These techniques help to achieve a cost-
effective level of maintenance and provide assur-
ance that the system is properly calibrated and
aligned.

All repair operations are conducted off-line.
When a faulty unit is identified, it is removed
from the system and replaced with a working
spare. The faulty unit is repaired in the Tech-
nical Maintenance Repair Center (TMRC).
Trained technicians at the TMRC use special test

#23

i
i
1

sets and documentation to répair the unit and
return it to a usable spare stock.

TSCS Operational Support

During the operational phase of SAFEGUARD,
the primary role of the TSCS is to assist the sites
in resolving any problems that arise. The Con-
figuration Management procedures used during
the development phase have been expanded to
ensure that any changes in the operational weapon
system are handled in an orderly and methodical
manner 47

Configuration Management starts with identi-
fication of a baselined product. The baseline
consists of the software and its high-level re-
quirements as used at site. These software
products include the application software and
those software tools needed to control, install,
test, and validate the application software at
site. The documentation includes Performance
Design Specifications (PDSs), Data Processing
System Performance Requirements (DPSPRs)}%#%
User-Oriented Requirements (UORs), and System
Design Requirements for Displays and Controls
(SDRDC).?” This baseline was placed under
Configuration Management control and was the
version used in final testing.

Changes to this software baseline and
SAFEGUARD hardware are rigorously controlled
by a series of Contractor/Army Review Boards.
Any problem or proposed improvement, either
hardware or software, is first documented by a
Master Problem Report (MPR), which is an out-
growth of the TR/CR forms used during develop-
ment. These MPRs are referred to the local
design organization at the TSCS. Proposed
solutions are reviewed by a Change Review
Board for technical accuracy and completeness.
Technical approval for change is obtained from
a Direction Committee comprised of Contractor
and Army management. Approved technical
changes that affect the baseline are submitted
as Engineering Change Proposals (ECPs) to a
local Configuration Control Board. If require-
ments are involved, the ECP also is sent to a

System Board for dollar and resource approval.
No changes are permitted at site without the
necessary approvals.

Before an approved software change can be
shipped to site, it must be tested and verified
at the TSCS. This testing, called Technical
Verification, consists of a selected set of
system-level tests. Once the contractor has
demonstrated these same tests at site, the Army
conducts User Operational Verification tests
using tactical procedures and operators. At this
point, the old software baseline is replaced for
operational use by the modified product.

The status of all changes to the baseline is
tracked from inception of the MPR to final incor-
poration of the ECP in the baseline. Hardware
changes are tracked by the On-Site Configuration
Activity Reporting System which ensures that the
current site configuration is always available.
Similarly, software status and various reports
are generated by the Status Accounting System.

LESSONS LEARNED
General

It is impossible to document all of the lessons
learned on a project the magnitude of SAFEGUARD.
Each participant will take with him a wealth of
experience gained from years of hard, dedicated
work. And each will have his own view as to
what is most important. Part II of this report,
Management and Overall Approach, deals with a
number of fundamental issues, often involving
management decision, that relate directly to the
material covered in this chapter. In the remain-
ing paragraphs, focus is placed on some of the
more technical issues encountered, some of which
may seem obvious but can easily be overlooked in
the rush to see a large job completed.

Support Computers

Early in SAFEGUARD an effort was initiated
to build a Prototype Development Facility (PDF)
that would allow program development in a

time-shared environment on the CLC itself, the
SAFEGUARD computer. Such an effort seemed
admirable since it would have avoided the cost

of providing additional computing hardware for
unit and element testing. However, it was a
mistake. This elegant time-sharing tool com~
peted with demands for CLC time needed to debug
the machine itself, to test the SAFEGUARD oper-~
ating system, and to support early application de-~
velopment, such as installation software. The
CLC was being used for testing generic programs
and it could not be tied up developing software
tools. PDF was abandoned, and very quickly all
development tools were concentrated on commer-
cial machines,¥

Support Software

PDF also erred in trying to be too ambitious.
Other efforts followed this same path. A time-
sharing system was developed for the GE 635,
one of the general-purpose computers available
at Bell Laboratories. This system, the GETSS,
became operational and supported 20 to 25 users,
and in many respects was ahead of its time in
providing editing and execution facilities. But it
too was misguided. GETSS could not possibly
support the hundreds of programmers eventually
required, and more importantly, it was devel-
oped for the wrong support computer. The pro-
ject originally was supported by an assembler on
the IBM 7094. By decision outside the project,
the 7094 was scheduled to be replaced by a
GE 635. This led to choosing the GE 635 machine
to support the time-sharing development. How-
ever, ultimately, SAFEGUARD management
adopted the IBM System 370 for project support,
leaving GETSS out of the mainstream.

NICOL, the NIKE-X Compiler Language, was
an attempt to produce a high-level language com-
piler, simijlar to PL/1, for the CLC. It was a very
complicated system and went through a number of
versions, including one that was to operate on the
CLC. The evolution of the project and changing
requirements made it a much too complex
endeavor., It, like PDF, was abandoned.

4-20

There is a message in this experience. Sup-
port software goals must be realistic, particu-~
larly in the sense that they be attainable at the
time they are required. The purpose of support
software is, after all, to support the objective
of building systems. Building support software
using state-of-the-art techniques is laudable, but
only if it contributes to the main objective.

Out of these early attempts evolved a system
of viable support software for the project. These
products were available when needed, flexible
enough to react as requirements changed, and
reliable. Various methods were used to achieve
these objectives. High-level languages were
built on a macro assembler to retain flexibility.
In fact, flexibility was considered so important
that efficiency was sacrificed. Software was
borrowed shamelessly and adapted, but with the
knowledge that it would have to be maintained.
High-risk, state-of-the-art approaches were
avoided. Incremental implementations were
planned so that programs could be used as quickly
as possible., Strict testing and release proce-
dures were adopted to ensure quality. Programs
were "frozen" after release and became subject
to change-control procedures. Stringent control
was placed over the interfaces among the facilities
to ensure integrity. All of these techniques
helped to build a successful support software
system.

System Exerciser

The system exerciser developed for
SAFEGUARD was a major innovation.’## This
concept can be widely seen in current develop-
ment on large software systems. The need to
provide test signals and data to '"drive" any sys-
tem is clear. As the complexity of the system
and its operating environment increases, so
does the complexity of the driver. Therefore,
it was judged vital to devote considerable re-
sources to the development of a driver on
SAFEGUARD, and the effort was started early.

The costs may seem large at the outset of
such a development but in the long run they really

o

[N

are not. They more than repay the effort spent.
As much of the hardware should be incorporated
in the exercise configuration as is cost effective.
The impact of the exerciser on the application
system should be kept to a minimum. And then,
the exerciser should be tested to create a stable
base for system testing.

Patching, Debugging Tovls, and Testing

The ability to patch programs in a controlled
manner was a major contribution to the
SAFEGUARD success. A patch to fix a problem
could be delivered within days to the integration
team. It eliminated the need for time-consuming
source code redeliveries and system reverifica-
tion except at widely spaced intervals. In addi-
tion, patching provided a flexible, easy-to-use
tool through vs"hich new debugging aids and test
tools could be created and readily added to the
test configuration.”

The importance of unit and module testing can-
not be overemphasized. A high percentage of
the bugs found in process and functional integra-
tion could have been eliminated in the unit testing
phase. Therefore, it is highly cost effective to
provide extensive unit and module test facilities.

Modularity, Redundancy, and Multiprocessing

In the CLC, the use of well-defined interfaces
and modular hardware-building-blocks capable of
communicating within the framework of a dis-
tributed switching system provide the basis for
a dynamic computing complex. This structure
incorporating multiprocessing is capable of
adding new functional units which offer unique
economic or performance advantages. The CLC
can be configured in a wide range, from a single-
processor to a ten-processor system, and into
separate computing facilities to provide an in~-
dependent exerciser.

This architecture can provide high system
availability without the need for costly and com-
plete duplication. An additional computing ele-
ment (processor, store, I0C, etc.) can be added
as a single replacement in the event of failure in
that type element., This "n+1'" approach has

4-21

reduced the amount of equipment needed for re-
dundancy and for system exercise to a fraction of
that required for a complete standby system.

Multiprocessing did not present the expected
conflicts and lock-out problems anticipated.
Very few such problems were encountered, pos-
sibly because of the single-application nature of
SAFEGUARD, as opposed to commercial appli?
cations involving an unknown job-mix., But
probably more important, care was taken to
address process design. The decision to use the
task structure, in which each task is a small unit
of work, was a good one. These tasks were
scheduled by a table-driven operating system
rather than being dynamically scheduled. Avoid-
ing the use of interrupts for switching between
tasks was very deliberate and was the key to
maintaining sanity in a large application with
many tasks competing for resources.

It was good design practice to use short-running,
low-priority, asynchronous tasks wherever pos-
sible. This helped alleviate schedule conflicts
that would arise if there were a large number of
high-priority synchronous tasks. It guaranteed
that high-frequency, high-priority tasks would
execute as desired, and aided in distributing the
workload over a longer time-frame,

Error Control

The following items are a few key points and
recommendations based on the SAFEGUARD ex-
perience with error control. The recommenda-
tions are generally applicable to any large-scale,
real-time control system.

Component redundancy and multiprocessor
design are inherently fault-tolerant. Similarly,
software architecture is fault-tolerant if it has
multiple instances of tasks to do specific functions
(e.g., n track functions to update data on any of
n objects), if the processing work is divided into
many small independent tasks, if the software
control is decentralized, if there is emphasis to
confine errors locally, and if there are system
error responses to reinitialize the system to
replace faulty hardware components.

System error control guidelines and structure
should be defined early® They are required if
the total system is to have a consistent approach
to error control. Error logging throughout the
system should be the first guideline. The next
is to design a structure so that error responses
can be easily modified. The logging is an in-
valuable debugging tobl. And as operational ex-
perience on error occurrence rate is gained, the
response can be appropriately modified.

Finally, manual error control or manual
override should be provided even for automatic
and self-repairing systems. It is invaluable in
"bringing up'' a faulty system to isolate a com-
plex problem when the automatic software fea-
tures have failed to circumvent the trouble.

Maintenance Approach

Experience to date has demonstrated the fund-
amental power and flexibility inherent in the two
primary Maintenance and Diagnostic Subsystem
(M&DSS) features. These are the extensive data
bus interface with the entire DPS and the general-
purpose computing capability of the Maintenance
Data Processor ,32-3§

In retrospect, the total range of M&DSS capa-
bilities has yet to be explored fully, For example,
because of project schedule constraints, the
logic-block partitions originally defined have not
been changed. But different partitions, chosen
with timing faults in mind, might allow these
faults to be handled via the fault dictionary
method. (In this case, it also would be necessary
to increase the speed of the entire M&DSS which
now runs two orders of magnitude slower than
many of the internal logic events in the DPS.)

- Other diagnostic tools, such as the Installation
Test Programs, could be restructured with fault
isolation more in mind, thus yielding isolation to
the chassis level,!!

Development of Computer Languages

CENTRAN was developed to produce code for
the CLC, It is an extensible language whose ex-
tensions approximate PL/1 in control structure

4-22

and FORTRAN in data structure.® A number of
lessons were learned during its development and
use.

The designers, implementers, educators, and
users should not be disjcinted groups. The de-
signer should be involved as an implementer
to keep in touch with reality. He should also
be involved as an educator (if a feature is diffi-
cult to explain, maybe there is something wrong
with it) and as a user (uniformity in extension is
best achieved by knowing how the language is
being used.) The implementer should act as both
educator and program counselor to get feedback
on bugs being "programmed around' and to estab-
lish priorities for fixing them.

Several things about the implementer-user
relationship should have been learned earlier in
CENTRAN development. First, the release cycle
should be rigidly controlled as soon as possible,
no matter how short the cycle. It does not pay
to be a "nice guy' and give "fixes" to bugs inform-
ally. Next, old versions of the compiler should
not be kept around and certainly not maintained.
The maintainers are blamed for bugs that no
longer exist, and much time is spent rediscover-
ing causes for problems long since solved. -

Notices of new releases must go to everyone,
not just supervision. Users often underestimate
the impact on schedules of changes due to im-
provements to the compiler, even though the
improvements were requested.

Insofar as the designer-educator-user relation -
ship is concerned, the designers should have been
more involved in determining the structure and
content of the CENTRAN courses. Frequent
symposia (e.g., Advanced Topics in CENTRAN
Programming) should have been held, with com-
pulsory attendance.

CENTRAN should have been an expression
language. This not only would have aided the

production of more efficient, clearer, and more
concise code, but would have provided a greater

degree of uniformity to the language.

More thought should have been given to data
types required for data reduction. Maintenance

of CENTRAN programs'(especia.lly patching)
should have been given greater priority in the
design of CENTRAN.

Several of the CENTRAN design approaches
were advantageous. CENTRAN was implemented
by a small group of programmers. This ap-
proach avoided communication and other prob-
lems typically encountered with a large group of
programmers.

The register allocation mechanism, subrou-
tine interface primitives, and extensibility
mechanism designs worked well, as exhibited by
CENTRAN's short development time. The ability
to have partial word variables has been found
useful. The ability to program at several levels
in one language made the language suitable for
systems and applications programming. Finally,
and most important, the design of the extended
language was sufficient for the implementation
of SAFEGUARD software, and SAFEGUARD pro-
grams have been successfully implemented in
CENTRAN. Several studies of the suitability of
CENTRAN for SAFEGUARD have been made out-
side of Bell Laboratories, and all have concluded
affirmatively.

System Programming in PL/1

The Execution Preparation Facility (XPF)
performs the linkage editor function on the IBM
370 for CLC software. It was decided to de-
velop XPF in PL/1. Throughout the development,
many design and implementation decisions con-
cerning the use of PL/1 were made. Some of
these proved to be sound and others had unfor-
tunate results.

The extensive use of the PL/1 preprocessor
proved to be an excellent control mechanism.
The inclusion of macros, entry point declara-
tions, and global variable declarations via pre-
processor procedures greatly facilitated inter-
module communication. This standardization
guaranteed the integrity of interface.

As originally expected, the liberal use of PL/1
debugging aids was an invaluable development

4-23

tool. The large number of logic errors detected
through on-conditions such as SUBSCRIPTRANGE
and STRINGRANGE underlines the value of their
use.

The use of aSsembly language subroutines,
although dictated by efficiency and necessity,
presents some disadvantages. Since parameter
definition is compiler-dependent, assembly lan-
guage subroutines must be coded to meet the
parameter-passing standards and conventions of
a specific compiler. In PL/1, these proved even
more limiting since assembly language subrou-
tines must be coded for a specific version of the
compiler. When such subroutines are utilized,
this dependency on a particular version of a com-
piler should be explicitly documented.

One benefit of using PL/1 not considered in
the original decision was the ease with which
transfer of responsibility was accomplished.
Partial turnover of personnel occurred throughout
the project. 'Ifi‘ansfer of code responsibility to
new personnel was accomplished very smoothly
with no apparent decrease in productivity. Since
PL/1 can be largely self-documenting through the
use of meaningful variable names and standard
operation symbols, it is easy to read and under-
stand. This ease of understanding was the pri-
mary reason for the smooth personnel transitions.

Professional Design Review .

For part of the application program develop-
ment, a technique known as ''flowchart review"
was undertaken. As soon as the flowchart and
data set layouts for an area of the program were
completed — and before coding began — a review
meeting was held. The programmer was re-
quired to give a box-by-box explanation of a
detailed flowchart for his program to a small
group of his colleagues. In as friendly a manner
as possible, this review committee was expected
to be critical and to question aggressively every
assumption that the programmer made.

After such a review, the programmer coded
his unit, tested it, and released it to process

integration. Any minor changes due to bugs
found during integration had to undergo a second
type of review. Each programmer submitting a
minor change was required to select a referee
from among the senior members of the group.
The programmer would discuss with the referee
both his proposed change and the procedure to be
used in testing the chahge. The change could not
be released until the referee was satisfied with
the testing as well as with the code itself, After
the referee system was introduced, the problem
of bugs in minor changes came to an end.

One lesson learned from these experiments is
the extent of the increase in quality and produc-
tivity that can be obtained from a disciplined use
of professional review. The use of flowchart
review:

e Improved and simplified software design.

¢ Helped detect all major software design
errors before code was written.

¢ Reduced software development time by at
least 25 percent.

e Improved quality of delivered software.
The referee procedure brought an end to
the errors in minor changes turned over
to the system integration team. Other
forms of professional review have led to
similar results,

A second significant lesson can be learned by
comparing professional review with some of the
other techniques that also have led to improve-
ments in program quality and programmer pro-
ductivity; e.g., programming teams, modular and
top-down design, and structured programming.
There is a common denominator to these tech-
niques — the increased structure and discipline
that is placed on the process of writing software.
Although much remains to be learned about
writing software, it is clear that designing and
writing software needs to be a much more struc-
tured process than it generally is today.

Software Change Control

Two aspects of software change control that
were successful in SAFEGUARD were a project-
wide library maintenance system to control
source and object code and a standard trouble

4-24

report form. These were not developed over a
long period of time, but appeared very early in
the project. Because of this stability, software
developers grew accustomed to using them. The
library maintenance system was available during
the first phase (no change control), and the trou-
ble report form was available at the beginning of
informal change control. It was recognized that
early introduction and acceptance would be bene-
ficial because transition to the later phases would
be simplified, Two additional features of the
system, change control procedures and software
status accounting, proved to be more trouble~
some to define and implement. Early in the
period of informal change control, each process
area independently developed its own procedures;
thus a certain amount of reexamination and re-
definition were required during the transition to
formal change control.

Any software change control system is destined
to meet with some resistance. Programmers as
a rule have very definite ideas about what should
be done to their software. This factor, combined
with the dynamic nature of software, makes change
control a difficult problem, not so much in estab-
lishing the mechanisms and procedures, as in
dealing with human factors andensuring adherence
to procedures. The first step is to recognize
that change control is a necessity that should be
addressed early on any large project and, in fact,
will be addressed, either early in a systematic
manner or later in a less organized but more
costly manner. Only the recognition of this need
and conscientious addressing of acceptable pro-
cedures will guarantee successful change control.
These human factor aspects are the more impor-
tant considerations in successful software change
control, :

System Constants

The SAFEGUARD application software contains
thousands of numerical values or constants to
specify site parameters (e.g., radar location),
hardware characteristics (e.g., transmitted
power), physical modeling (e.g., air density

=3

profiles), etc. Accurate constants were needed
by designers in many different areas of each
application process., Early in process integra-
tion, a group was assigned the task to identify,
validate, and control the values of all such sys-
tem constants. Once this was done, no signifi-
cant problems caused by improper numerical
values occurred during the final integration and
testing of the SAFEGUARD software.

While this effort was successful, it is clear
that the specification and control of constants

4-25

should have been considered during the initial
design of the software processes. Had it been
addressed earlier, undoubtedly it would have
resulted in some special design features. These
thousands of constants could have been controlled
in a less burdensome manner either at process
construction time, during process initialization,
or during execution, by using special constant
data sets. The special features could also en-
compass easier procedures for verifying and
changing values.

